李红霞博士,现任ued体育 数据科学学院副教授,硕士生导师。主要研究领域为微分方程数值解解法及应用,金融数学中的模型计算和模拟。浙江省青年人才,校中青年骨干教师
Ø教育与工作经历:
2005年09月至今,ued体育 任教
2002年09月-2005年09月,上海大学计算数学专业学习,获博士学位,师从茅德康教授。
1999年09月-2002年09月,上海大学计算数学专业学习,,获硕士学位,师从茅德康教授。
1995年09月-1999年09月,河北师范大学数学教育专业学习,获学士学位。
2012年08月-2013年09月,美国布朗大学应用数学专业,访问学者,合作导师舒其望教授。
Ø科研项目:
1)“二维流体数值模拟中双曲守恒型方程(组)的熵耗散格式研究”(N 11302188)2014.1-20国家自然科学基金,23万元(立项金额),2014.01-2016.12(结项),主持;
2)“半无限变分不等式的牛顿型迭代算法研究” (N.10871168)国家自认科学基金,24万,2009.1-2011.12(结题),3/5
3)国家留学基金资助(编号:2011833239, 录取文号:留金法[2011]5025号), 留学期限12个月
Ø论文、著作:
1.Li Hongxia, Entropy dissipation scheme and minimums-increase-and-maximums-decrease slope limiter,Int. J. Numer. Meth. Fluids 2012; 70(10), 1221–1243
2.Li Hongxia,The Numerical Approximation of the Linear Advection Equation in One Space Dimension,JOURNAL OF COMPUTERS,VOL. 7, NO. 1, JANUARY2012, 272-277
3.Li Hongxia,One explicit scheme for the linear heat conduction equation and the numerical approximation,JOURNAL OF COMPUTERS, VOL. 7, NO. 3, March,2012, 743-748
4.Li Hongxia,The Numerical Analysis of the Schemes of 1-Order Ordinary Differencial Equations,Research Journal of Applied Sciences, Engineering and Technology4(2),2012,141-144
5.Li hongxia,Numerical Analysis of the Lotka-Volterra Mode, The 2ndintern -ational conference on multimedia technology (IEEE catalog number: CFP1153K-PRT)(ICMT2011), 3579 – 3582
6.Li Hongxia,An Improvement design of the entropy dissipator of the entropy dissipating scheme for scalar conservation law,J. Inform. Comput. Sci,7(8) (2010), 1747-1751
7.Li Hongxia; The Lax-Wendroff Theorem of Entropy Dissipation Method for Scalar Conservation Laws in One Space Dimension,Journal of Mathematics Research1(1)(2009), 98-101
8.Li Hongxia, Wang Zhigang, Mao Dekang; Numerically Neither Dissipative Nor Compressive Scheme for Linear Advection Equation and Its Application to the Euler System,Journal of Scientific Computing, Volume 36, Number 3,2008, P285-331;
9.Li Hongxia, The Improvement of the Entropy Dissipation Scheme.J. Inform. Comput. Sci,3(3)(2006), 471-475
10.H. Liand D. Mao, Further development of an entropy diassipating method for scalar conservation laws.J. Inform. Comput. Sci,1(3)(2004), 147-151